Structured illumination microscopy and correlative microscopy to study autophagy

Autophagy Volume 75, 15 March 2015, Pages 61–68

Autophagy is a predominant eukaryotic mechanism for the engulfment of “portions” of cytoplasm allowing their degradation to recycle metabolites. The autophagy is ubiquitous among the life kingdom revealing the importance of this pathway that appears more complex than previously thought. Several reviews have already addressed how to monitor this pathway and have highlighted the existence of new routes such as the LC3-associated phagocytosis (LAP) and the non-canonical autophagy. The principal difference between autophagosomes and LAP vacuoles is that the former has two limiting membranes positives for LC3 whereas the latter has one.  […]

Role of VAMP3 and VAMP7 in the commitment of Yersinia pseudotuberculosis to LC3-associated pathways involving single- or double-membrane vacuoles

Autophagy Volume 10, Issue 9, 2014, pages 1588-1602

Yersinia pseudotuberculosis can replicate inside macrophages by hijacking autophagy and blocking autophagosome acidification. In bone marrow-derived macrophages, the bacteria are mainly observed inside double-membrane vacuoles positive for LC3, a hallmark of autophagy. Here, we address the question of the membrane traffic during internalization of Yersinia investigating the role of vesicle- associated membrane proteins (VAMPs). First, we show that as in epithelial cells, Yersinia pseudotuberculosis replicates mainly in nonacidic LC3-positive vacuoles. Second, in these cells, we unexpectedly found that VAMP3 localizes preferentially to Yersinia-containing vacuoles (YCVs) with single […]